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Abstract: Wood basic density (WD) plays a crucial role in estimating forest biomass; moreover,
improving wood-density estimates is needed to reduce uncertainties in the estimates of tropical
forest biomass and carbon stocks. Understanding variations in this density along the tree trunk
and its impact on biomass estimates is underexplored in the literature. In this study, the vertical
variability of WD was assessed along the stems of large trees that had a diameter at breast height
(DBH) ≥ 50 cm from a dense ombrophilous forest on terra firme (unflooded uplands) in Acre, Brazil.
A total of 224 trees were sampled, including 20 species, classified by wood type. The average WD
along the stem was determined by the ratio of oven-dry mass to saturated volume. Five models
were tested, including linear and nonlinear ones, to fit equations for WD, selecting the best model.
The variation among species was notable, ranging from 0.288 g cm−3 (Ceiba pentandra, L., Gaertn) to
0.825 g cm−3 (Handroanthus serratifolius, Vahl., S. Grose), with an average of 0.560 g cm−3 (±0.164,
standard deviation). Significant variation was observed among individuals, such as in Schizolobium
parahyba var. amazonicum (H. ex D.), which ranged from 0.305 to 0.655 g cm−3. WD was classified
as low (≤0.40 g cm−3), medium (0.41–0.60 g cm−3), and high (≥0.61 g cm−3). The variability in
WD along the stem differs by wood type. In trees with low-density wood, density shows irregular
variation but tends to increase along the stem, whereas it decreases in species with medium- and high-
density wood. The variation in WD along the stem can lead to underestimations or overestimations,
not only in individual trees and species but also in total stocks when estimating forest biomass. Not
considering this systematic bias results in significant errors, especially in extrapolations to vast areas,
such as the Amazon.

Keywords: tropical forest; wood density; climate change; commercial species; Acre; Brazil

1. Introduction

Large trees play a crucial role in forest conservation, contributing significantly to the
hydrological and carbon cycles, as well as sustaining biodiversity and carbon storage [1].
Storage in large trees (≥50 cm diameter at breast height (DBH)) represents 40 to 60% of
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the forest’s dry aboveground biomass. Due to their specific architecture, these trees are
particularly important for issues related to climate change, given their disproportionate
contribution to the total forest biomass [1–3]. The lack of data on large trees can be attributed
to the high cost of sampling and to legal restrictions, because extracting these trees from
the forest in Brazil is only permitted with the approval of a forest management plan [4].

In the Brazilian Amazon, forest management plans are developed for the harvest of
roundwood for sawn timber production. The true impact of this management on mitigating
climate change is still debated, as it faces significant challenges in achieving effective sus-
tainability [5] and has both positive and negative environmental effects [6]. The beneficial
effects include the contribution of forest regeneration to carbon-stock recovery and the
temporary storage of carbon in timber products. The negative aspects include the reduction
of forest carbon stock due to the removal of large commercial trees, emissions from the
decay of the crowns, stumps, and roots of harvested trees, and biomass loss due to collateral
damage from things such as access roads, skid tracks, and log landings. Forest fires and
degradation related to logging and illegal logging can turn the forest into a potential source
of greenhouse gas emissions [7,8].

Quantifying greenhouse gas emissions from deforestation and forest degradation
requires determining biomass, and for this it is essential to obtain values for wood ba-
sic density (WD), which varies according to species and spatial distribution. Wood basic
density is a crucial variable in the allometric models used to estimate biomass in tropical
forests [9–14]. These estimates are essential for assessing carbon stocks and flows, contribut-
ing to the understanding of the influence of these factors on global climate change [15,16].

Determining WD requires caution due to the influence of various factors, such as
radial and vertical variations in relation to tree height [3,15,17], differences between species
and taxonomic groups [10,18], and spatial variations in forest typologies [10,11,19–21].
Local environmental conditions, such as soil fertility and light conditions, also influence
WD [11,22,23].

Vertical variation along the stem must be considered when estimating forest biomass
because not considering this source of systematic bias results in significant errors in esti-
mates for vast areas, such as the Amazon [3,17,24–27].

Equations have been developed to correct for vertical variations within trees [3,15,17]
or to determine “ideal” sampling points for a single species [28] or a group of species [26].
However, these results, while satisfactory, cannot be generalized to all species, especially
tropical ones, which have patterns of variation that differ from other regions [3].

There is a knowledge gap regarding vertical variation in WD in species in the south-
west region of the Brazilian Amazon [21], especially in studies that include large trees
(with diameter at breast height (DBH) ≥ 50 cm). The present study aims to determine the
vertical variation of WD in the stems of large trees, to propose allometric equations and
corrections for this variation, and to discuss their influences on forest biomass estimates in
the southwestern Brazilian Amazon.

2. Materials and Methods
2.1. Study Area

The study was conducted in the Antimary I and II ranches (9◦23′43′′ S latitude and
67◦58′50′′ W longitude), located in the municipality of Porto Acre, in the state of Acre
in the southwestern Brazilian Amazon (Figure 1). The research area corresponds to an
annual production unit of 1253.02 ha, designated as UPA 02, integrated into the Sustainable
Forest Management Plan (PMFS) and governed by the Annual Operational Plan [28], both
implemented by Fox Laminados Ltda (Porto Acre, AC, Brazil). A 100% forest inventory
of commercial trees with DBH ≥ 50 cm was conducted in the area in May 2015, and the
management project received approval from the Acre Environmental Institute (IMAC) in
2016 [29].

The vegetation in the southwestern Brazilian Amazon is classified as moist terra
firme (unflooded upland) forest [12,30]. In the managed area, the predominant vegetation
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is dense ombrophilous forest, although open ombrophilous forest with bamboo is also
present in smaller proportions [29]. The local climate is classified as “Am” (Köppen),
characterized as a tropical monsoon climate with distinct dry and rainy seasons [31]. The
annual average temperature is 24 to 26 ◦C, and the annual precipitation ranges from
1750 to 2500 mm [32]. The dry season extends from June to September, while the rainy
season extends from October to April or May, with the first quarter of the year having the
highest precipitation [33]. The predominant soils in the region are classified as ultisols,
dystrophic ultisols, and typic dystrophic oxisols, with soil texture ranging from clayey to
very clayey [28,34].
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Figure 1. Location of the study area in the Antimary I and II ranches in the Porto Acre municipality, 
Acre state, within an annual production unit of 1253.02 ha. 

 

Figure 1. Location of the study area in the Antimary I and II ranches in the Porto Acre municipality,
Acre state, within an annual production unit of 1253.02 ha.

2.2. Species and Sampled Trees Selection

Species selection was based on the coverage value index, providing information on
tree density (individuals ha−1) and basal area (m2 ha−1) derived from the 100% forest
inventory conducted by the management company, where all commercially relevant trees
with DBH ≥ 50 cm were measured [29]. Scientific names were verified in Brazil’s Flora 2020
database [35]. The twenty species with the highest coverage values (basal area per hectare)
were selected [36]. The number of individuals sampled (224) was determined according
to the sample size (n) for a population considered to be infinite using Equation (1). The
variable used to determine sample size was volume (m3).

n =
t2 ∗ (CV)2

(E%)2 (1)

where n = number of individuals sampled; t = tabulated value of Student’s t-statistic at 5%
significance with “n” degrees of freedom; CV = coefficient of variation; and E% = required
accuracy (10%).

2.3. Collection of Wood Disks along the Commercial Bole

The sampled trees were all cut at 30 cm above the ground, including those with
buttresses. The commercial stems were sectioned into logs, and wood disks of constant
thickness (≈3 cm) were taken from the base of each log. For individuals with DBH ≥ 80 cm,
the stem was sectioned every 4.30 m until the total length of the commercial stem was
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reached. In individuals with a DBH from 50 to 80 cm, the log length was 8.30 m. The first
disk in all trees was taken at 30 cm above the ground (Figure 2). A total of 479 disks were
collected and analyzed. The number of disks removed per tree varied according to the
diameter and length of the tree (Figure 2). This methodology for disk sampling along the
stem was adapted to the operational procedures of the company for practical activities in
the management area, such as log length classification to facilitate the logging stage. The
number of sampled wood disks per tree ranged from 2 to 5 and they were classified into
sections named A, B, C, and D according to their positions along the stem. For all sampled
individuals, Section A corresponded to the position of the base of the stem, i.e., 30 cm above
the ground, while Sections B, C, and D varied in height depending on the stem section.

Figure 2. Sampling of wood disks removed along the commercial bole.

2.4. Determination of WD and Classification of Species by Wood Type

The wood discs collected in the field were brought to the laboratory and a wedge-
shaped sample was extracted from each disc, including parts of the heartwood, sapwood,
and bark, to adequately represent the disc. The wedges were immersed in water until
saturation to obtain the saturated volume using the immersion method, which involves
measuring the water displacement related to the saturated volume of the piece (cm3).

Subsequently, the samples were dried in a forced-air-circulation oven at a temperature
of 100 ± 2 ◦C until reaching constant mass. WD was determined by using the ratio of dry
mass (g—0% moisture) to saturated volume (Equation (2)) [37].

ρ =
ms

Vsat
(2)

where ρ = WD
(
g cm−3), ms = Dry mass of the wood (g), Vsat = volume of saturated

wood
(
cm3 ).

The WD for each sampled species was obtained as the arithmetic mean of the densities
of samples of the same species [12,38]. Additionally, deviations and a 95% confidence
interval were calculated.

The 20 species were categorized by wood type based on the mean value of WD
(Table 1). The designations used were adapted to “low-density wood”, “medium-density
wood”, and “high-density wood” [39].
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Table 1. Categories and criteria describing wood types based on basic wood density (WD).

Category Criterion

Low density WD of the stem ≤ 0.40 g cm−3

Medium density WD of the stem 0.41–0.60 g cm−3.
High density WD of the stem ≥ 0.61 g cm−3

2.5. Models Tested to Estimate the WD of the Stem

Five regression models were fitted (Table 2) to estimate the WD throughout the stem
(ρstem) using independent variables such as the WD at the base (ρbase, g cm−3), diameter at
breast height (DBH, cm), and commercial height (h, m). Regression models were applied to
the WD of the 20 species in three phases. First, a general equation was fitted, considering
all arboreal individuals of the 20 species evaluated in this study. In the second phase, the
“low-density” and “medium-density” species were included in a single data set, as the
number of samples for low-density-wood species was insufficient to fit an equation just for
this category. In the last phase, only “high-density” species were considered when fitting
the equation.

Table 2. Linear and nonlinear regression models to estimate the WD of the stem.

Model Name Statistical Model Type

Linear model

Model 1 ρstem = β0 + β1ρbase + ε Simple linear regression
Model 2 ρstem = β0 + β1d + β2ρbase + ε Multiple linear regression
Model 3 ρstem = β0 + β1d + β2h + β3ρbase + ε Multiple linear regression

Nonlinear model
Model 1 ρstem = β0 × dβ1 × ε Simple nonlinear regression
Model 2 ρstem = β0 × dβ1 × hβ2 × ε Multiple nonlinear regression

β0, β1, and β2 refer to the coefficients of the equation and ε to the error; ρstem = the WD of the entire stem;
ρbase = WD at the stem base; d = the diameter at breast height; and h = the commercial height.

Evaluation of the goodness-of-fit was conducted based on indicators described by
Campos and Leite [40]. These include the coefficient of determination (R2), representing
the quality of regression line fitting; the square root of the mean squared error (RMSE),
which amplifies and penalizes errors of greater magnitude more strongly; the coefficient of
regression variation; and a graphical analysis of the distribution of residuals. Additionally,
the mean absolute deviation (MAD) and the Akaike information criterion (AIC) were
computed. Both MAD and AIC serve as valuable tools in the selection and evaluation of
statistical models, providing crucial insights for choosing models that balance precision
and simplicity.

3. Results
3.1. Aboveground Stocks in Commercial Trees

The stem WD (ρstem) of individual trees displayed considerable variation, rang-
ing from 0.288 to 0.825 g cm−3 (Figure 3). The mean ± standard deviation (SD) was
0.560 ± 0.164 g cm−3 for the total of 224 individuals, encompassing 20 commercial species.
Significantly divergent densities were noted among species (p < 0.000). Beyond inter-
species differences, there was a noteworthy, albeit statistically non-significant (p = 0.368),
variability among individuals of the same species, exemplified by Schizolobium parahyba var.
amazonicum (Huber ex Ducke), whose individuals ranged in WD from 0.305 to 0.655 g cm−3.
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Figure 3. WD of 20 tree species from the southwestern Brazilian Amazon. • represents the mean and
ò represents individual observations. The 95% confidence interval for the mean is indicated, which
was calculated using individual standard deviations. Species: 1—Albizia niopoides (Spruce ex Benth.,
Burkart); 2—Apuleia leiocarpa (Vogel, J.F. Macbr.); 3—Astronium lecointei (Ducke); 4—Barnebydendron
riedelii (Tul., J.H. Kirkbr.); 5—Castilla ulei (Warb.).; 6—Cedrela odorata (L.); 7—Ceiba pentandra (L.,
Gaertn.); 8—Ceiba samauma (Mart., K. Schum.); 9—Copaifera multijuga (Hayne); 10—Dipteryx odorata
(Aubl., Willd.); 11—Eschweilera bracteosa (Poepp. Ex O. Berg, Miers); 12—Eschweilera grandiflora (Aubl.,
Sandwith); 13—Ficus insipida (Willd.); 14—Handroanthus serratifolius (Vahl., S. Grose); 15—Hura
crepitans (L.); 16—Hymenaea courbaril (L.); 17—Parkia paraensis (Ducke); 18—Schizolobium parahyba var.
amazonicum (H. ex D.) B.; 19—Sterculia apetala (Jacq., H. Karst.); 20—Terminalia tetraphylla (Aubl., Gere
& Boatwr.).

3.2. Vertical Variability of WD along the Stem

There were variations in WD along the stem, and these values were significantly influ-
enced by the wood type (p < 0.001, Kruskal–Wallis). The average WD for low-density-wood
species was 0.346± 0.056 g cm−3, for medium-density-wood species it was 0.458 ± 0.068 g cm−3,
and for high-density-wood species it was 0.738 ± 0.075 g cm−3 (Table 3).

Table 3. Mean WD (g cm−3) by sample position along the stem and wood type: T = overall mean 1 of
all sections; I = mean 1 at the base of the stem 2; F = mean 1 of the final vertical section 3.

Basic
Density

Species Group

Low Density Medium Density High Density Totals
n x ± SD CI 95% n x ± SD CI 95% n x ± SD CI 95% n x ± SD CI 95%

T 20 0.346 ± 0.056 0.320–0.372 114 0.458 ± 0.068 0.445–0.470 90 0.738 ± 0.075 0.722–0.753 224 0.560 ± 0.164 0.539–0.582

I 20 0.338 ± 0.059 0.310–0.366 114 0.477 ± 0.092 0.460–0.494 90 0.756 ± 0.096 0.736–0.775 224 0.576 ± 0.177 0.553–0.600

F 20 0.354 ± 0.067 0.323–0.386 114 0.441 ± 0.086 0.425–0.457 90 0.725 ± 0.071 0.710–0.739 224 0.547 ± 0.167 0.525–0.569

1 is the arithmetic mean; 2 represents Section A; 3 refers to the last section sampled along the stem, which could be
Section B, C, or D depending on the species; n refers to the number of tree samples; x is the arithmetic mean; SD is
the standard deviation; and CI is the 95% confidence interval.

Species with low-density wood tend to exhibit an increase in WD from the base to the
top of the stem, with the exception of Ceiba pentandra (Figure 4).
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In percentage terms, there were increases ranging from 14.18% to 35.08% in the mean
WD of the last stem section for each species compared to the density at the base (Section A),
with Sterculia apetala exhibiting the highest relative variation of 35.08% (Table 4). C. pentandra
had the highest mean DBH (130.2 cm) among the species and, due to this, allowed a greater
segmentation of the stem (Figure 4). This species did not show significant vertical variation
in WD compared to other species in the same category. However, following a subtle trend
of both decreasing and increasing WD along the stem, it ended up with a decrease of 16.24%
from the base (Section A) to the uppermost section (Section D).

Table 4. Relative difference (for low-density-wood species) between the WD at the stem base and in
the last 1 sampled stem section.

Species n Vertical Variation (%)

Ceiba pentandra 5 −16.24 2

Ficus insipida. 4 14.18
Hura crepitans. 6 23.50
Sterculia apetala 5 35.08

1 This refers to the last section sampled along the stem, which can be Section B, C, or D depending on the species.
2 The negative value indicates a decrease in density along the stem (Figure 4).

In the medium-density-wood species, there was no consistent pattern observed in
terms of the vertical variation in WD (Figure 5).

Ceiba samauma and Cedrela odorata increased their basic densities by 3.13% and 6.18%,
respectively, in the last stem section, represented by Section B for both species. In contrast,
other species experienced a decrease ranging from −2.60% to −36.31% in WD from the base
to the top of the stem (Table 5). Parkia paraensis and Schizolobium parahyba var. amazonicum
had the highest vertical variations, with decreases of 36.31% and 34.79%, respectively.

The high-density-wood species exhibited decreases (Figure 6) in WD from the stem
base to the top ranging from −2.71% to −7.96% (Table 6), with the exception of Eschweilera
bracteosa and Terminalia tetraphylla, which experienced increases of 9.23% and 2.64%, re-
spectively. It is noteworthy that although E. grandiflora and E. bracteosa belong to the same
genus, they exhibit opposite behaviors in terms of the variation in WD along the stem. The
vertical variations for each species are listed in Table 6 and range from −7.96% for Albizia
niopoides to 9.23% for Eschweilera bracteosa.
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Table 5. Relative difference (for medium-density-wood species) between the average WD at the stem
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Species n Vertical Variation (%)

Barnebydendron riedelii 5 −2.60 2

Castilla ulei 37 −2.79 2

Cedrela odorata 8 3.13
Ceiba samauma. 22 6.18

Copaifera multijuga 6 −2.64 2

Parkia paraenses 20 −36.31 2

Schizolobium parahyba var. amazonicum 16 −34.79 2

1 Refers to the last section sampled along the stem, which can be Section B, C, or D depending on the species;
2 Negative values indicate a decrease in density along the stem (Figure 5).
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Table 6. Relative difference for species in the high-density-wood category between the average WD
at the stem base and in the last 1 sampled stem section.

Species n Vertical Variation (%)

Albizia niopoides 7 −7.96 2

Apuleia leiocarpa 13 −7.50 2

Astronium leicointei 6 −7.85 2

Dipteryx odorata 11 −7.64 2

Eschweilera bracteosa 15 9.23
Eschweilera grandiflora 13 −7.08 2

Handroanthus serratifolius 8 −2.71 2

Hymenaea courbari 8 −2.71 2

Terminalia tetraphylla 9 2.64 2

1 Refers to the last section sampled along the stem, which can be Section B, C, or D depending on the species;
2 Negative values indicate a decrease in density along the stem (Figure 6).

3.3. Fitting the Equation for Stem WD for the Large Individuals of 20 Commercial Species

The three fitted models, as noted in Table 7, show that the independent variables
explained more than 92% of the variation in the stem WD (ρstem). RMSE was consistent at
0.045 and the CV was approximately 5%, indicating relatively low variability and narrow
dispersion around the mean. However, at a significance level of 10%, some of the coefficients
estimated by Models 2 and 3 were not statistically significant, mainly those related to the
diameter (d) and height (h) variables. Therefore, Model 1 is the most appropriate according
to the AIC and MAD statistics (Table 7); this model uses only the WD at the base as a
predictor variable.

Table 7. Linear regression model general equation (including all species in the different wood density
categories (low, medium, and high)): coefficients and evaluation criteria of the linear equations for
estimating the WD of the stems of large individuals of commercial species.

Model n Coefficient p-Value R2 % RMSE AIC MAD CV

1 224
b0 0.045930 0.000

92.47 0.04499 −747.69 0.03029937 5.41b1 0.892211 0.000

2 224
b0 0.036362 0.030

92.49 0.04493 −746.22 0.03042542 5.43b1 0.000106 0.467
b2 0.894152 0.000

3 224

b0 0.033016 0.056

92.51 0.04487 −208.80 0.03043674 5.43
b1 0.000070 0.643
b2 0.000693 0.419
b3 0.886929 0.000

It is noteworthy that the estimates with Model 1 had an average error of 0.69% ± 9.31%
but with individual discrepancies in residuals; errors at the tree level ranged from −31.78%
to 40.31% (Figure 7). These discrepant errors were mainly associated with trees with a wood
density of 0.30 to 0.50 g cm−3, i.e., low- and medium-wood-density species.

Of the two nonlinear equations tested with the variables “d” and “h” to estimate
the WD of the stems for the 20 commercial species (including species in all wood density
categories (low, medium, and high), Model 2 had the better fit, as it had lower RMSE and
AIC values (Table 8).

The residuals in Model 2 had a more uniform distribution than in Model 1. However,
the presence of “residual” points was noted, in addition to under and overestimates of the
mean WD of the stem (Figure 8).
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Figure 7. Linear models: graphical analysis of the equations fitted for the WD of the stems of large
individuals of 20 commercial species. The models include species in all wood density categories (low,
medium, and high).

Table 8. Nonlinear regression model general equation (including species in all wood density cat-
egories (low, medium, and high)): coefficients and evaluation criteria of the linear equations for
estimating the WD of the stems of large individuals of 20 commercial species.

Model n Coefficient p-Value RSME AIC MAD

1 224
b0 1.07977 0.00613

0.1634 −171.83 0.1439071b1 −0.15089 0.07117

2 224
b0 0.43092 0.00348

0.1461 −220.97 0.1208498b1 −0.24770 0.00101
b2 0.49938 0.0000

3.3.1. Equation Fitting for Low-Density- and Medium-Density-Wood Species

The models for low- and medium-density-wood species proved less accurate than
the models for high-density-wood species. However, Table 9 reports models that showed
relatively acceptable results for estimating the WD of the stem in the low- and medium-
density-wood categories. In all three models, independent variables explain more than 70%
of the variation in stem WD (ρstem). The preferred estimates came from Model 1, because it
has the lowest AIC and because the estimated coefficients were both statistically significant
at the 1% level (Table 9).
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Figure 8. Nonlinear models: graphical analysis of the equations fitted for the WD of the stems of
large individuals of 20 commercial species. The models include species of all wood density categories
(low, medium, and high).

Table 9. Low- and medium-density-wood equation: coefficients and criteria for evaluating linear
equations for estimating the WD of the stems of large individuals of commercial species.

Model n Coefficient p-Value R2 % RQEM AIC MAD CV

1 134
b0 0.14621 0.000

70.81 0.041616 −465.76 0.03285666 7.45b1 0.64671 0.000

2 134
b0 0.15300 0.000

70.84 0.041593 −208.81 0.03275438 7.42b1 −0.00006 0.703
b2 0.64320 0.000

3 134

b0 0.15270 0.000

70.84 0.041592 −208.80 0.03276133 7.42
b1 −0.00007 0.706
b2 0.00004 0.970
b3 0.64300 0.000

Through graphical analysis, it is possible to confirm that Model 1 exhibited a more uni-
form distribution of residuals (Figure 9). However, the presence of points with residuals, as
well as underestimations and overestimations of the mean WD of the stem, are still evident.
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Figure 9. Graphical analysis of equations for low- and medium-density-wood species fitted for the
stem WD of large individuals of commercial species.

3.3.2. Equation Fitting for High-Density-Wood Species

Equations fitted to estimate the stem WD for high-density-wood species explained
more than 85% of the variation in the dependent variable (Table 10). Among the three
equations, Model 1 yielded the best fit and was the most parsimonious. Although both fitted
equations showed very close statistics, the AIC and the significance levels of the coefficients
indicated Model 1 as the best model (Table 10). As seen in the previous estimation, both
diameter and height do not explain the variation in the dependent variable.

Table 10. Equations for high-density-wood species: coefficients and criteria for evaluating linear
equations for estimating the WD of the stems of large individuals of commercial species.

Model n Coefficient p-Value R2 % RSME AIC MAD CV

1 90
b0 0.19212 0.000

85.61 0.028115 −381.45 0.020296 2.751b1 0.72177 0.000

2 90
b0 0.1799379 0.000

85.85 0.027883 −208.81 0.020326 2.75b1 0.0001953 0.231
b2 0.7178809 0.000
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Table 10. Cont.

Model n Coefficient p-Value R2 % RSME AIC MAD CV

3 90

b0 0.1792810 0.000

85.87 0.027866 −208.81 0.0203103 2.753
b1 0.0001800 0.291
b2 0.0002703 0.746
b3 0.7143200 0.000

The graphical analysis shows that the models for high-density-wood species have
good fits, although some discrepant residual data points are present (Figure 10).
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Figure 1. Location of the study area in the Antimary I and II ranches in the Porto Acre municipality, 
Acre state, within an annual production unit of 1253.02 ha. 

 
Figure 10. Graphical analysis of equations for high-density-wood species fitted for the stem WD of
large individuals of commercial species.

4. Discussion

It is well documented that there is a real influence of vertical variability on the average
WD along the stem, which can differ significantly from the WD of samples taken solely
at breast height (1.30 m above the ground) or the stem base [15,17,25,26,41]. Due to this
influence, some studies have suggested percentage values to correct the WD of samples
only from the stem base or at breast height, such as the value of 4.3% for the central
Amazon [15] and the value of 3.2% for the southwestern Amazon [21].

Based on the data from the current study, which was collected from 224 individuals
in 20 species, there is a suggested reduction of 2.89% in the average WD value if samples
are collected only at the stem base level. However, it is suggested that this correction be
applied depending on the wood-type category, as the vertical variability behavior of density
along the stem differs among low-, medium-, and high-density-wood categories. The use
of samples from the stem bases of low-density-wood species was found to produce an
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underestimation of 2.89% for the WD of the stem as a whole, while the use of stem base
samples from medium- and high-density-wood species caused overestimations of 4.12%
and 2.46%, respectively.

This classification of wood type based on WD can contribute to better forest manage-
ment by defining methodologies and management practices applicable to each group [42].
Grouping these species and attempting to explain the different patterns of vertical density
variability along the stem aids in understanding how this variable is interconnected with
the life history strategies of trees and their ecological functions in the forest [19,43–46]. Be-
cause WD is a determinant of biomass, it also affects the forest’s role in carbon storage and
the global climate. Species with a high wood density have value for carbon sequestration.
These species are also important for carbon in reforestation initiatives [47,48].

The patterns of vertical variability in the WD of the species evaluated in this study
(Figures 4–6) align with previous findings [3,41,44,45]. When grouped by wood type, low-
density-wood species (typically pioneers or early secondary species) tend to increase their
WD towards the tree canopy [3] These species have a short lifespan [49,50] and require
high growth rates in their early growth stages [19,43,51], initially producing low-density
wood but later producing denser wood as growth rates decrease to maintain structural
stability [45,52]. In contrast, species in the high-density-wood category, represented by late-
secondary and climax species, generally exhibit decreasing vertical variation profiles [6],
where they initially produce a greater quantity of wood per unit volume and later this
quantity decreases, contributing to a lower density at the top of the stem [45].

The two main sets of characteristics described above represent the extremes of a
continuum of possibilities where the observed variations are complex and highly dependent
on the functional and strategic characteristics of each species [41]. For example, species
with intermediate characteristics, such as the medium-density-wood species in this study,
exhibited vertical variations in WD that had increasing (Ceiba samauma), highly decreasing
trends (Parkia paraensis), or even practically constant trends (Barnebydendron riedelii), making
it challenging to obtain a typical pattern without considering an average.

Vertical variability may be related to radial variation in the stem, and when analyzed
together, these types of variation can better explain the trends of many species [15,17,26,44].
It was not possible to analyze radial variations in the present study, but this does not bias
the results on vertical variation because the samples were taken in the form of complete
disks (heartwood, sapwood, and bark). Radial variations are also related to different life
strategies [53] and can be explained by cambial age, growth-ring size, and the proportions
of juvenile and mature wood, where these factors may change their proportions, increasing
or decreasing with tree height [17,41,54,55] and thus also impacting vertical variation.

Vertical variation has been less studied than radial variation [17], especially for tropical
forests. The current study of vertical variability in WD along the stem is therefore important
both at the taxonomic level (species) and at the functional level (ecological groups) as it
contributes to a better refinement of stem biomass estimates and of carbon accounting for
tropical trees [3,17].

In this study, equations were developed to estimate the stem WD of trees with
DBH ≥ 50 cm for 20 commercial species (Section 3.3). Regressions were run for each wood-
type category, aiming to include the most significant variable (ρbase) and the most practical
variables for field measurement (d and h). For the three wood density categories evaluated
(low, medium, and high), models with only the base WD (ρbase) as a predictor variable
provided the best fit for linear models to estimate the mean WD of the entire stem.

The findings show that ρbase explains more than 70% of the variations in all regres-
sions (Tables 7, 9 and 10, and Figures 7, 9 and 10). Diameter and height, although more
convenient for field measurement, were not statistically significant to improve the model fit.
Excluding this exception, the possible explanation for diameter and, especially, height not
being significant variables is due to the lack of a consistent relationship between WD and
tree size [56]. Some studies have found positive and negative correlations, but these corre-
lations were weak [45,48,57,58], while others have found that these variables are largely
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independent [15,59,60]. Phillips et al. [56] stated that tree size is not a good indicator of WD,
and therefore, tree dimensions (d and h) cannot be used to infer wood density. Therefore,
for the equations developed in this study for the “all species” scenario, it is recommended
to use those that had only ρbase as the predictor variable. These equations are valuable
alternatives for normalizing basic stem wood density [3,50] since sampling entire trees to
quantify WD along the stem, as performed in this study, is expensive and rarely conducted
for practical applications [61], especially for large trees. Relying on approximate values for
WD is often the only pragmatic way to obtain a more accurate estimate [62].

Nonlinear regressions were fitted with the variables d and h (Table 8 and Figure 8)
to be used in the estimation of biomass and, consequently, carbon. These equations can
be applied to extensive areas that have forest censuses. Equations that are based solely
on WD at the base of the tree (ρbase) as a predictor variable have greater utility for these
censuses. The choice of equations provided in this study should be guided by the specific
objectives of the researcher. Developing equations for different categories of the 20 species
with similar characteristics and behaviors represents a significant advance in reducing
uncertainties in forest biomass estimates.

5. Conclusions

The behavior of the vertical variation in basic wood density along the stem differs by
wood type, where low-density-wood species increase in density with height, while medium-
and high-density-wood species decrease. Considering only the WD at the stem base will
therefore result in an underestimation of the basic stem density for low-density-wood
species and overestimations for medium- and high-density-wood species. This vertical
variation can be corrected by using the mentioned percentages or the equations developed
in this study. The equations that best estimated the density of the stem were, for the most
part, those that had only the base density as the predictor variable. Tree dimensions such
as diameter and height are not good indicators for estimating wood density.

Correcting the vertical variability of wood density along the stem is necessary because
even a small systematic bias, represented as a percentage, results in substantial errors
in biomass and carbon stock estimates when applied on broad scales of forest resources
at regional, national, or international levels, as is the case with the Amazon rainforest.
Having wood density values closer to the actual (correct) values is crucial for more accurate
estimates of carbon stocks, both in forests and in timber products.
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